(3x^2-5x-62)+(3x^2+7x)=0

Simple and best practice solution for (3x^2-5x-62)+(3x^2+7x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-5x-62)+(3x^2+7x)=0 equation:



(3x^2-5x-62)+(3x^2+7x)=0
We get rid of parentheses
3x^2+3x^2-5x+7x-62=0
We add all the numbers together, and all the variables
6x^2+2x-62=0
a = 6; b = 2; c = -62;
Δ = b2-4ac
Δ = 22-4·6·(-62)
Δ = 1492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1492}=\sqrt{4*373}=\sqrt{4}*\sqrt{373}=2\sqrt{373}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{373}}{2*6}=\frac{-2-2\sqrt{373}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{373}}{2*6}=\frac{-2+2\sqrt{373}}{12} $

See similar equations:

| 6c-3c=18 | | 6b-4b-b-1=18 | | 1/2b+9/4=7/5 | | 10u-4u-5+2=19 | | Z=7+10i | | 8c-8c+2c+3=9 | | 4x-18=40 | | 10=25+(-2x) | | 12=4x-20 | | 5x-15=23 | | 5x+4x-x=16 | | 5(x+3)-2(3x-4)=7 | | 7(x)=3x-10 | | x^2+16x=-10x | | -2h+-12=24 | | 6-4b=-6b+6(b-3) | | S+3s-3s=20 | | X÷8-6-v4=0 | | 4q-3q-q+2q=14 | | 3(2a+5)+4(3a+1)=27 | | X2+5x-2=0 | | 10s+s-11s+4s-2s=6 | | 3x+3.5=78.5 | | 10s+s-11s+4s−2s=6 | | -3(w+2)(-w+6)=0 | | 10s+s−11s+4s−2s=6 | | -6-4b=-6b+6(b-3) | | 12d+4d+d-17d+4d=20 | | 180=200*2^x | | 9q+4q-3q=10 | | 5^x=2/13 | | 3p2+9p-120=0 |

Equations solver categories